Prove that $\sum\limits_{r = 0}^n {{3^r}{\,^n}{C_r} = {4^n}} $
By Binomial Theorem,
$\sum\limits_{r = 0}^n {{\,^n}{C_r}{a^{n - r}}{b^r} = {{\left( {a + b} \right)}^n}} $
By putting $b=3$ and $a=1$ in the above equation, we obtain
$\sum\limits_{r = 0}^n {{\,^n}{C_r}{{\left( 1 \right)}^{n - r}}{{\left( 3 \right)}^r} = {{\left( {1 + 3} \right)}^n}} $
$ \Rightarrow \sum\limits_{r = 0}^n {{3^r}{\,^n}{C_r} = {4^n}} $
Hence proved.
If ${\left( {2 + \frac{x}{3}} \right)^{55}}$ is expanded in the ascending powers of $x$ and the coefficients of powers of $x$ in two consecutive terms of the expansion are equal, then these terms are
Number of rational terms in the expansion of ${\left( {\sqrt 2 \,\, + \,\,\sqrt[4]{3}} \right)^{100}}$ is :
If in the expansion of ${(1 + x)^m}{(1 - x)^n}$, the coefficient of $x$ and ${x^2}$ are $3$ and $-6$ respectively, then m is
The largest term in the expansion of ${(3 + 2x)^{50}}$ where $x = \frac{1}{5}$ is
If the coefficients of ${x^7}$ and ${x^8}$ in ${\left( {2 + \frac{x}{3}} \right)^n}$ are equal, then $n$ is